

Logistics of Aging Weapon Systems

Kim Triplett Synergy, Inc

LYNESGY

Outline

- What is "aging"
- Nature of Problem
 - Demographics
 - Systems Implications of Aging
 - Engineering Implications of Aging
 - Logistics Implications of Aging
- Possible Solutions
 - Engines/Powertrains
 - Electronics
 - Structural

What is "aging"?

- Aging includes:
 - System deterioration due to:
 - Time corrosion (calendar age)
 - Use stress (realized life)
 - Technological obsolescence
 - Reduced supportability (economic service life)
 - Degraded mission performance

Calendar Age

- Measured in terms of years in service
- Remaining life = design life calendar years
- Replacement time = total inventory/yearly procurement
- Management metrics
 - Replacement time ≤ Service life
 - Compare actual age to half-life*
 - If actual > half-life replacement time longer than service life and average age of system will increase

^{*}Midpoint of System's average service life in calendar years

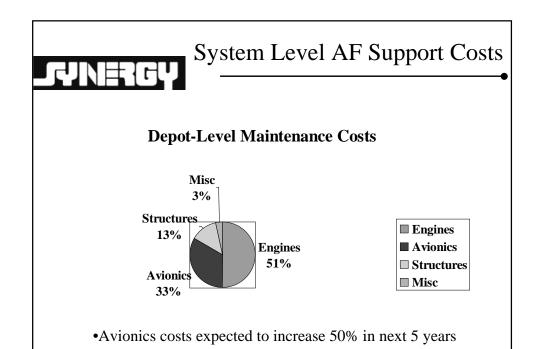
LANESCA

Service Life

- Hours of use and how used
- Design life = hours of operation a system is designed to achieve
- Normal use = design life/service life
- System can "prematurely age" because of
 - Greater use than "normal"
 - More "stressful" use

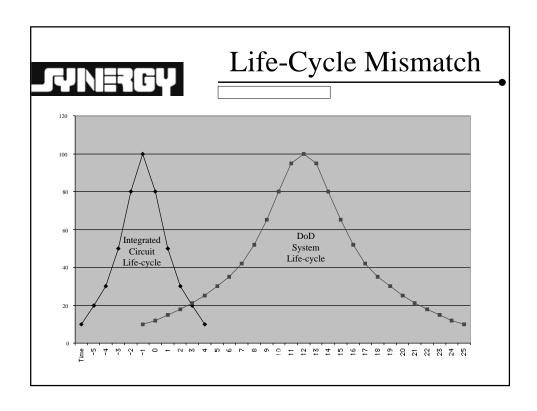
Demographics

• Average Calendar Age:

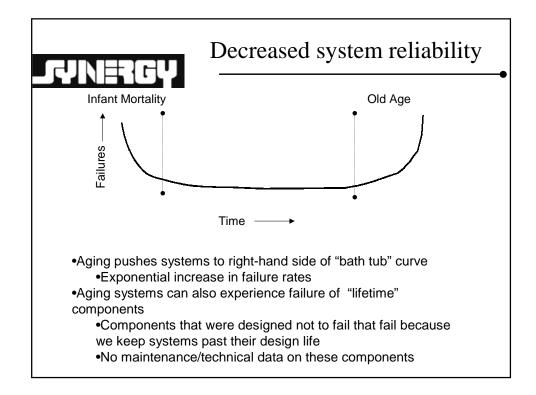

Weapon System	Half-Life	1990	2000	2010	2020
USAF	25-33	29	39	49	59
KC-135					
USAF	10-15	6.0	13.5	20.1	13.3
Fighters					
US Army	15	N/A	13	23	33
M1A					
Navy	10-15	11	13	17	25
Fighters	10-13	11	13	1 /	23

NOTE: RED indicate system exceeds half-life

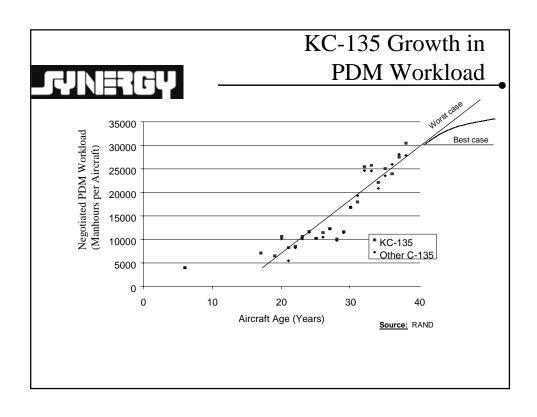
System Implications of Aging

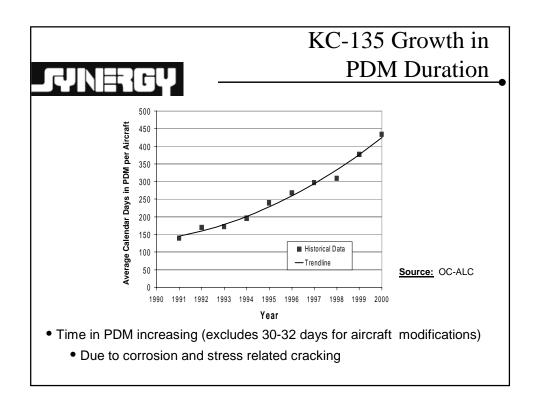

- Engine/Powertrain
 - Wear out
 - Environmental issues noise, pollution
 - Safety issues weight restrictions; catastrophic failures
- Electronic subsystems
 - Hardware/software obsolescence
 - Changing mission requirements/threats
- Structural
 - Corrosion fatigue
 - Fatigue
 - Stress Corrosion Cracking (SCC)

Engineering Implications of Aging


- Corrosion
 - Calendar age
 - Corrosive environments
- Fatigue Cracking
 - Stressful use wearing out sooner than expected
 - Low and high cycle fatigue
 - Widespread fatigue damage (WFD)
- Stress corrosion cracking
 - 7XXX series aluminum alloys
- Technological Obsolescence
 - Diminishing sources of supply/out-of-production (DMS/OP)

Logistics Implications of Aging


- Decreased reliability
 - Bath tub curve
- Increased time in and costs for depot maintenance
- Decreased mission capable rates
- Increased maintenance hours per operating hour
- Parts shortages and increased cannibalization rates
- Decreased weapon system availability

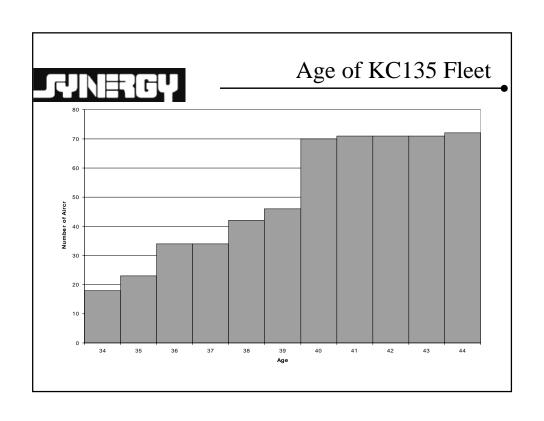




Increased depot maintenance time and costs

- Weapons system take more hours to fix in depot
- Weapon systems stay longer in depot
- More parts are replaced
- More weapons are found in depot than originally planned
- Consequently fewer systems operational and depot repair costs increase

Problem Statement

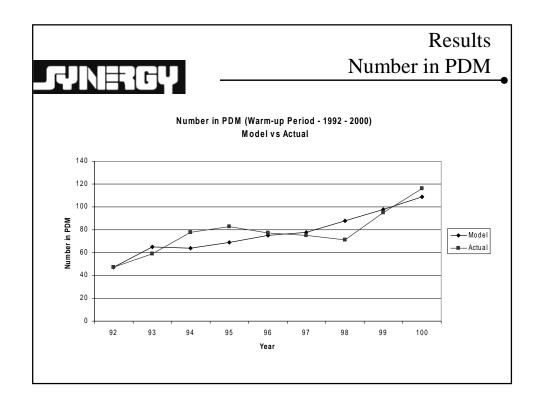


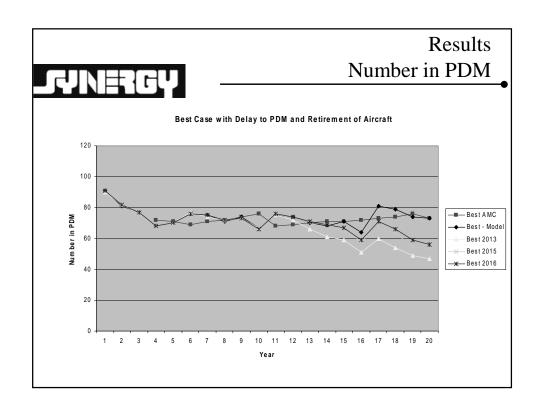
- Aging KC-135 fleet poses risk to meet tanker warfighting requirements in the near or mid-term (2001-2020)
- Determine what is the best tanker investment plan for the near or mid-term

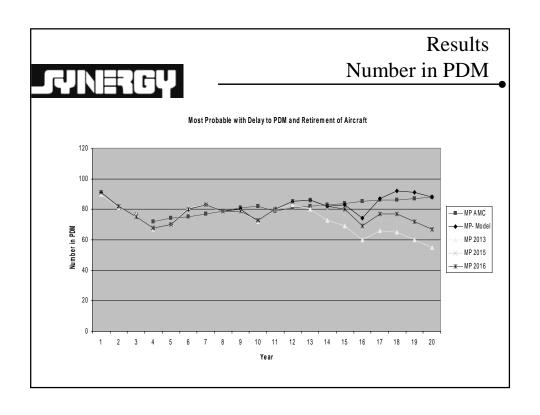
LANESCA

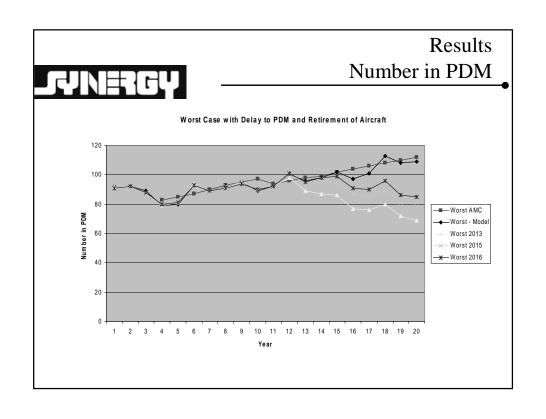
Study Approach/Assumptions

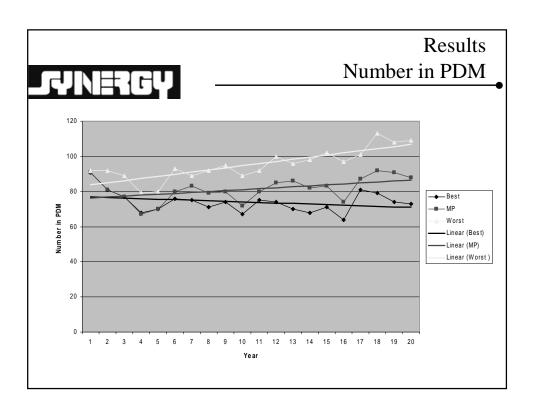
- Developed an ARENA simulation model to predict KC-135s available for operations based on the increasing PDM service times
- Collected Historical data from AMREP, G079 and REMIS including the age of the aircraft, owning organization, MDS, and utilization rate
- Produced output results from the ARENA simulation model in text files and read results into a Microsoft Access Database for analysis
- Determined PDM delay time using: historical distribution, linear, exponential, no growth, linear to 219 days, and logistics regression functions
- Used time between PDM actions approximately equal to five years
- Modeled unlimited capacity at PDM line (limited capacity can also be modeled)

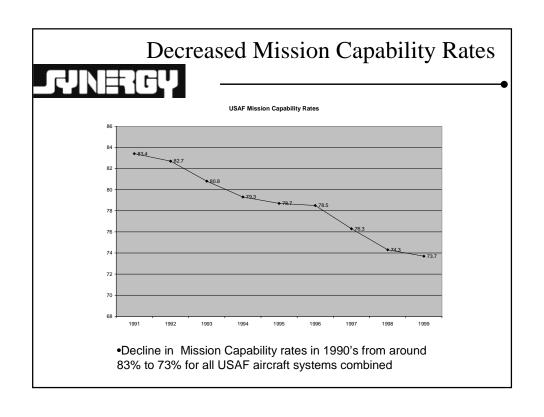


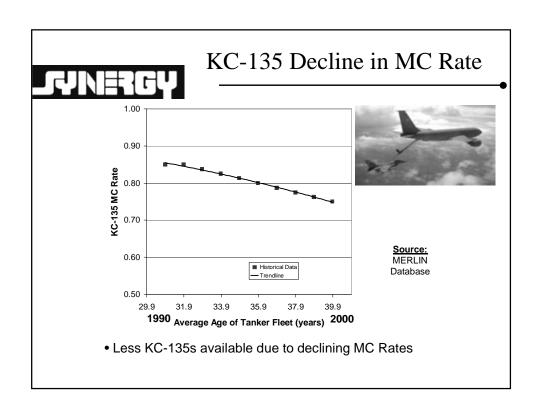

UNERGL	J	PDM Delay
Expression Name	Condition	Equation
Historical Distributions (called PDM Delay)	Based on Age Intervals	
•	<=30	Exponential = (97+EXPO(49.9)
	31-35	Lognormal = (98+LOGN(136,176)
	36-40	Gamma = (62+GAMM(115,226))
	>40	Normal (Growth Factor applied to Mean) NORM(366, 125
Linear	Based on Current Age	14.991*Current Age – 269.0
Exponential	Based on Current Age	14.991*Current Age – 269.0 26.814*e
No Growth	Based on Current Age	1/(1/390 + (1.9324*0.8054 ^{Current Age}
Linear to 219	Based on Year	
	Warm-Up Period	30.694*YearWU + 91.1 (YearWU = Year + Warm Up Period
	1 to 2 Yrs (= 2000 to 2001	-182.71*Year + 584.4
	Greater than 2 Years	21
Logistics Function	Based on Current Age	1/(1/866 + (0.0617*0.9163 ^{Current Age}

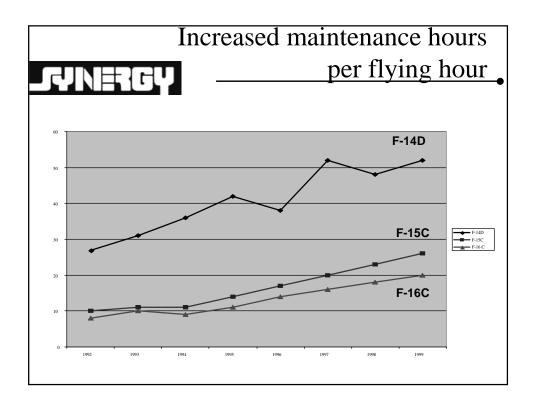

Analysis



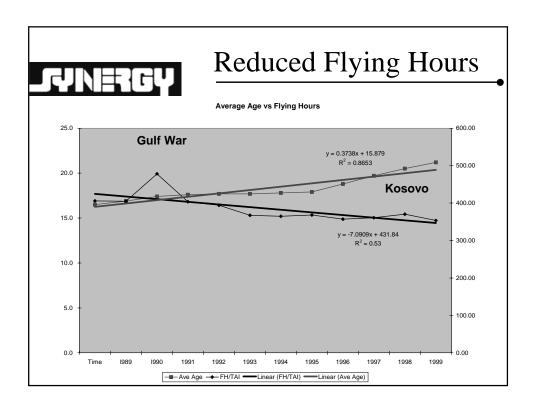

- Compared availability of KC-135s vs. requirements for near or mid-term
- Predicted aircraft in PDM using all aircraft in service until 2020
- Predicted aircraft in PDM by buying 5 aircraft in 2013, buying 18 aircraft for each year thereafter until 2030
 - Oldest aircraft will retire starting with 5 in 2014 and 18 for each year thereafter
- Predicted aircraft in PDM by using a similar buy program starting in years 2014 and 2015

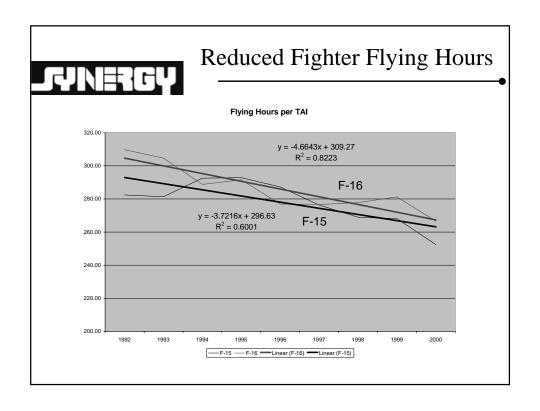






_4D≣₹GY


Increased use of cannibalization


- Lack of parts leads to:
 - AF aircraft cannibalization rates increased 78% from 1995 to 1998
 - Cannibalizing "doubles" maintenance time –
 have to remove and replace two parts to fix one part
 - Increased likelihood of breaking another part during its removal

Decreased Availability

- More weapon systems in depot and for longer periods of time – decreases number of weapons systems that are at operational units
- Lower mission capable rates increases the number of weapon systems deployed to ensure mission completion

Possible Solutions

- Engines/Powertrains
 - Replace
 - Rebuild
- Electronics
 - Diminishing Manufacturing Sources/Out of Production Solutions (DMS/OP)
 - Modular-Open-System-Architecture (MOSA)
- Structural
 - Service life extension Programs (SLEP)
 - Structural Integrity Programs
 - Corrosion prevention and control
 - Nondestructive evaluation
 - Prognostics
 - Economic service life estimates

QUESTIONS?

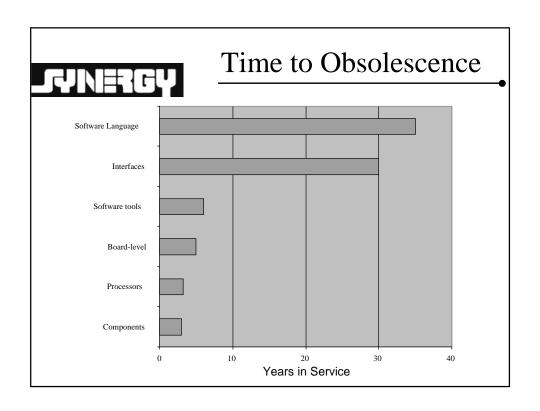
References

- Pierrot, Lane, Senior Analyst, National Security Division Congressional Budget Office; "CBO Testimony Statement on Aging Military Equipment before the Subcommittee on Military Procurement, Committee on Armed Services and U.S. House of Representatives"; 24 February 1999; available online at http://www.cbo.gov

 Pyles, Raymond; RAND Testimony; "Aging Aircraft: Implications for Programmed Depot Maintenance and Engine-Support Costs"; February 1999

 Living Fore Committee of the Secretary of Programs (Traing Aircraft)

- United States General Accounting Office; Report to the Secretary of Defense; "Tactical Aircraft: Modernization Plans Will Not Reduce Average Age of Aircraft"; February 2001; GAO-01-163
 United States General Accounting Office; "U.S. Combat Air Power: Aging Refueling Aircraft are Costly to Maintain and Operate; May 1996; GAO/NSIAD-96-160
 RAND; "Aging Aircraft: A Crisis on the Horizon (Parts I III)"; available online at http://www.rand.org/paf/highlights/aging.html
- Congressional Budget Office: "The Effects of Aging on the Costs of Operating and Maintaining Military Equipment"; August 2001
- Committee on Aging of U.S. Air Force Aircraft, National Materials Advisory Board, Commission on Engineering and Technical Systems, and National Research Council; "Aging of U.S. Air Force Aircraft: Final Report"; National Academy Press; Washington D.C.; 1997; Publication NMAB-488-2; available online at http://stills.nap.edu/html/aging
- Committee on Aging Avionics in Military Aircraft, Air Force Science and Technology Board, Division on Engineering and Physical Sciences, and National Research Council; "Aging Avionics in Military Aircraft"; National Academy Press; Washington D.C.; 2001



Back Up Slides

LYNERGY

Technological Obsolesce

- Commercial Off The Shelf (COTS)
 - Technology refresh cycle of 18 months
 - Availability cycle of 10 years
 - Military service lives exceed 15 years
- Military constitutes >1% of commercial market
- Diminishing manufacturing sources of supply/out-of-production (DMS/OP)
 - 1986 7.5% of all electronic devices discontinued
 - 1996 13.5% of all electronic devices discontinued

Software Obsolescence

- Increased costs of maintaining software maintenance tools
- Decreased number of personnel familiar with legacy software

Engine Solutions

- Rebuild
 - Current rule of thumb rebuild 2 cycles before replace
 - Looking at feasibility of doing more rebuilds before replacing
- Replace
 - Increased power/performance
 - Greater ability to meet noise restrictions

Electronics -DMS/OP Solutions

- Diminishing Manufacturing Sources/Out of Production Solutions (DMS/OP)
- Purchase lifetime supply increase inventory costs
- Redesign circuits to accept newer parts increase system design costs
- Replace entire module or subsystems with new technology-acquisition costs and form, fit function problems

LANESGA

Electronics - MOSA Solution

- Modular-Open-System Approach
 - Scalable, more easily upgradeable avionics systems
 - Comprehensive MOSA Solution saves money in long run, but more costly than customized point solutions in the short run
- Modular systems involve isolation of functional performance from the specific characteristics of the software and hardware
- Open systems are usually modular but make use of nonproprietary interface definitions and standards available to multiple competitors

Service Life Extension Programs

JYNEZGY

- Structural Modifications:
- Navy to extend F-18C/Ds flying hours from 6,000 to 12,000
 - Cost of \$2.5M per aircraft
- AF F-16's actual FH of 5,000 versus 8,000 planned due to stressful Ops
 - Mods to extend to 8,000 FHs
 - Cost of 400K per aircraft

Structural Integrity Programs

- Reduces likelihood of structural failure during design life through use of damage tolerance requirements
- Key is full scale durability testing to validate design service life based on operator's planned mission profiles
- Difficulty is that few systems are used as originally intended

LYNESGY

Corrosion Prevention & Control

- Prevention deteriorates overtime
 - Proper selection of materials during design
 - Reduced humidity storage (30-40% relative humidity)
- Detection early is better than later
 - Corrosion classification scheme
 - Increased time between depot repairs mitigates against early detection
- Repair
 - Very expensive in terms of both time and money
 - No loss of aircraft due to corrosion

Nondestructive Testing

- Technology to diagnosis and characterize structural damage to develop effective repairs
- Detection of fatigue cracks under fasteners
- Detection of small cracks associated with WFD
- Detection and quantification of hidden corrosion
- Detection of cracks in multilayer sections
- Detection of SCC in thick sections

Structural - Prognostics

- Predict failures before they occur
 - Trend lines
 - Leading Indicators
 - Uncover causal linkages
- Ongoing work in this area

Economic Service Life

- Determining and predicting when weapon system reaches point where it is appropriate to replace rather than repair
 - No clear methodology to accomplish
 - No clear definition of elements that constitute structural economic life
 - No clear methodology to forecast future costs
 - No standard economic/cost model to perform calculations
- Vehicle rule of thumb retire vehicle once \$XXXX in repairs performed